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Multigrid (MG) algorithms for large scale eigenvalue problems (EP), obtained from discretizations
of partial differential EP, have often been shown to be more efficient than single level eigenvalue
algorithms. This paper describes a robust and efficient, adaptive MG eigenvalue algorithm. The
robustness of the present approach is a result of a combination of MG techniques introduced here,
i.e., the completion of clusters; the adaptive treatment of clusters; the simultaneous treatment
of solutions in each cluster; the multigrid projection (MGP) coupled with backrotations; and the
robustness tests. Due to the MGP, the algorithm achieves a better computational complexity and
better convergence rates than previous MG eigenvalue algorithms that use only fine level projections.
These techniques overcome major computational difficulties related to equal and closely clustered
eigenvalues. Some of these difficulties were not treated in previous MG algorithms. Computational
examples for the Schrodinger eigenvalue problem in two and three dimensions are demonstrated for
cases of special computational difficulties, which are due to equal and closely clustered eigenvalues.
For these cases, the algorithm requires O(¢N) operations for the calculation of ¢ eigenvectors of size
N, using a second order approximation. The total computational cost is equivalent to only a few

Gauss-Seidel relaxations per eigenvector.

PACS number(s): 02.70.Bf, 02.70.Rw, 02.60.L;j

I. INTRODUCTION

Large scale eigenvalue problems (EP) arising from
physics, chemistry, and engineering often have special
features which are not always exploited by eigenvalue
solvers, such as the following: The EP can be approx-
imated on several discretization levels, only a few eigen-
values and eigenvectors are sought, and the solutions are
dominated by smooth components. In contrast with sin-
gle level techniques, multigrid (MG) solvers can exploit
naturally these features and provide powerful solving ca-
pabilities [1,2].

MG techniques involve, in general, the processing of
the problem on a sequence of discretization levels. Usu-
ally, these levels are finite dimensional spaces of functions
defined on increasingly finer grids. Such MG techniques
can approximate the inverse power iteration, which is a
very efficient eigenvalue technique, in order O(N) opera-
tions.

Computer programs that solve eigenvalue problems are
often faced with large computational difficulties, espe-
cially when close or equal eigenvalues are present, as
usual in Schrédinger and in electromagnetism problems.
These difficulties become more complicated when the
eigenvalue problems are represented on several levels.
Single level or MG procedures, such as relaxations or
interlevel transfers, can amplify or introduce an eigen-
vector in the error component of a solution that is an
approximated eigenvector. This we refer to as eigen-
vector mixing. When clusters of eigenvectors with close
or equal eigenvalues are computed, the error of a com-
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puted eigenvector usually contains combinations of the
other eigenvectors with close eigenvalues. A cluster of
eigenvectors will be called complete relative to a proce-
dure if it contains a whole set of eigenvectors which are
mixed by that procedure. If a procedure acts on an in-
complete cluster, the not-approximated eigenvectors of
the completed cluster usually would enter into the com-
puted solutions and prevent convergence. In addition to
the computational difficulties related to close eigenval-
ues, to incomplete clusters, and to mixing of solutions,
the structure of clusters may differ on different levels, and
the coarse level eigenvectors may not approximate well
the fine level ones. Other difficulties, not treated in MG
algorithms before, result from the fact that the cluster
structures, the multiplicity of eigenvalues,.and the levels
on which the solutions are poorly represented, are usually
not known in advance.

The above mentioned difficulties are closely coupled
and should be treated together to obtain robust and ef-
ficient algorithms. Several previous MG approaches re-
late to some of the mentioned difficulties. In no previous
approach all of these difficulties were treated together.
The above discussion suggests that (i) clusters should be
completed, (ii) different clusters should be treated dif-
ferently, i.e., adaptively, (iii) solutions should be treated
in clusters simultaneously, and (iv) separation of eigen-
vectors should be done on different levels. MG algo-
rithms which may fail in standard situations include non-
adaptive algorithms, sequential algorithms, algorithms in
which clusters are not completed, or algorithms in which
solutions are not properly separated. Even when such
algorithms work, the coarse level separation techniques
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introduced here may improve their efficiency, and the pre-
sented adaptive techniques may improve their robustness.

This paper focuses on a robust and efficient algorithm
for the calculation of a few eigenvalues and their corre-
sponding eigenvectors. Its development is guided by the
treatment of the above difficulties. The algorithm first
solves the problem on coarse levels, then interpolates the
solutions to finer levels where they serve as initial approx-
imations to the finer level solutions. On each fine level,
clusters are identified, tested for completeness, completed
if necessary, and improved by MG cycles using coarser
levels. The eigenvalue equations are relaxed on each level
followed by full approximation scheme [27] (FAS) inter-
level transfers. An MG projection (MGP) which general-
izes the Rayleigh-Ritz projection, and backrotations are
employed on coarse levels, in order to separate eigenvec-
tors within clusters and to prevent mixing. Robustness
tests control the algorithm’s convergence and efficiency.
These are done adaptively for different clusters on differ-
ent levels.

The robustness of the present approach is determined
by the introduced MG techniques, i.e., the adaptive com-
pletion and treatment of clusters, the simultaneous treat-
ment of solutions in each cluster, the MGP coupled with
backrotations, and the robustness tests. Moreover, due
to MGP, the algorithm achieves a better computational
complexity and better convergence rates than previous
MG eigenvalue algorithms which use only fine level pro-
jections.

Computational examples are shown, for Schrodinger
eigenvalue problems in two dimensions (2D) and 3D, with
periodic boundary conditions. The problems have special
difficulties such as very close and equal eigenvalues, the
cluster structure differs on different levels, the number
of eigenvalues in clusters and their multiplicity are not
known, and coarse level solutions are poor representa-
tions of fine level solutions. A second order approxima-
tion is obtained in O(gNN) work, for g eigenvectors of size
N on the finest level. The algorithm uses one to ten fine
level cycles per cluster and in each cycle, two to four fine
level relaxations per eigenvector are performed. The al-
gorithm yields accurate results for very close eigenvalues,
and accuracy of more than ten decimal places for equal
eigenvalues. The MGP reduces the most time consuming
part of previous algorithms, namely the fine level sepa-
ration work with complexity O(¢2N) to O(gN).

We refer to the early works [3-5] for theory on MG
eigenvalue solvers and first algorithms. A sequential MG
algorithm for linear eigenvalue problems performing the
projection on fine levels is presented in [1], this algorithm
combined with a conjugate residual method is applied to
the Hartree-Fock equation [6] for real problems. More
theory and algorithms on MG eigenvalue problems are
found in [2,7]; a related MG approach is presented in [8].

The present approach can be extended to nonlinear
eigenvalue problems, an example being presented in [9],
[10], and was efficiently used in sequences of EP and bi-
furcation problems [11]. In [12,13], an adaptive alge-
braic correction scheme cycle is used to compute the first
eigenvector and its eigenvalue for the multigroup neu-
tron diffusion equation. The elements of such an MG

cycle, modified to the FAS form, can be used in the al-
gorithm presented here. The combination of our tech-
nique with domain decomposition techniques for eigen-
value problems [14,15] is natural but was not analyzed
yet. A review article on single level large-scale complex
eigenvalue problems, containing many references, is [16].
For theory on Ritz projections and on algebraic eigen-
value problems we refer to [17-19]. The single level tech-
nique for obtaining the eigenvectors by relaxations and
projections is referred in different places as subspace, si-
multaneous or Ritz iterations; see [20-22] for a single
level algorithm and mathematical foundations.

The MG projection and backrotations were first intro-
duced in [23] and in the reports [9,24,25]. Applications
of the MG combined cycles to electromagnetism compu-
tations are presented in [11], and an outline of a related
computational approach presented here is given in [26].

The paper is organized as follows. Section II presents
the central MG separation techniques, i.e., the MG solver
cycle, the MGP incorporating backrotations, and the
MG combined cycles. Section III describes the adap-
tive techniques, i.e., the adaptive MG cycle, the cluster-
completion, the robustness tests, and the adaptive full
MG [27] (FMG). Section IV presents computational ex-
amples. It contains a final subsection with details and
observations on the algorithms which were included there
to keep the rest of the presentation simpler.

II. ON MULTIGRID SEPARATION
TECHNIQUES

This section presents the two main separation tech-
niques used in the introduced algorithms, the MG solver
cycle and the MG projection (MGP). The main role of
the MG solver cycle is to separate a cluster from the
other clusters, while the main role of the MGP is to sep-
arate the eigenvectors inside a cluster. The MGP is com-
bined with backrotations which prevent undesired rota-
tion, sign flipping, and scaling of eigenvectors. Both sep-
aration techniques are used simultaneously in MG com-
bined cycles.

In the rest of the paper, the problem (1)

AU =UA 1)

is defined on a sequence of finite dimensional spaces,
called levels. The U denotes an eigenvector associated to
the eigenvalue A. The matrix corresponding to the level
i problem is denoted by A; and a transfer from level ¢
to level j (e.g., interpolation) is denoted by I]. For ex-
ample, A; may be the matrices obtained by discretizing
a continuous eigenvalue problem, on a sequence of grids.
In this case, the level 7 is the space of functions defined
on grid 7. In the presented computational applications
it is considered that the levels correspond to discretiza-
tions (e.g., on grids), ordered from coarse to fine (level 1
corresponding to coarsest discretization) and the corre-
sponding levels are called coarse or fine. Generally, this
restriction is not necessary, the algorithms having an al-
gebraic character.

The following FAS general formulation (full approxi-
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mation scheme [27]) is used in the algorithms. Let

be a level ¢ problem, where F; is a general operator and
T; is a right hand side. The level j problem

F;U; =T, (3)

is an FAS transfer of the level i problem (2) if
T; = II(T; — F,U;) + F, I U; . (4)

See also [1]. The level j problem (3) is used in solving the
level i problem (2). The level i solution UP' is corrected
with the level j solution U; by the FAS correction:

U = U 4 L(U; — BURY) (5)

A. Multigrid solver cycles

The MG solver cycle is a central tool for separating
the desired eigenspaces and for separating eigenvectors
when the eigenvalues are different and well enough ap-
proximated. It can be regarded as an approximation of
the efficient inverse power iteration [19].

To motivate the MG solver cycle, consider the eigen-
value problem (1), where A is a square matrix. If A’
approximates well enough the eigenvalue A (with multi-
plicity 1 for convenience), corresponding to an eigenvec-
tor U, then the inverse power iteration

|

Uttt =(A-AN'D)Un, Ut =UTTYJ UMY (6)
will converge fast (in a few iterations) to U [since the U
component in U™ will be multiplied at each iteration by
1/(A — A') = oo, [19]]. For large A it is too expensive to
compute (A — A’I)~1, but one can approximate (6) by
solving iteratively:

(A-ADU =y, UM =UTT U ()
which is equivalent to (6). During the solution proce-
dure, if U™ approximates well enough U, then A’ can be
improved, using a Rayleigh quotient equality

UMTAU™ = (UMTU™A'. (8)

For large A, the iteration (7) is impractical for sin-
gle level algorithms, but it can be approximated by MG
cycles, which have often shown to be efficient [1,2].

Relation (1) can be considered in block form where
U is a matrix whose columns are the eigenvectors cor-
responding to the eigenvalues of the diagonal matrix A.
Relations (4) and (5) can be considered in block form in
the same way. In a simultaneous MG solver cycle, the
problem (1) is represented on the different levels in the
FAS form:

FU; .= AU, -UA; =T; (9)

where T,,, = 0 on the initial level m (finest usually) and
T; are computed by (4) for j < m, with j =i —1. Equa-
tion (9) is relaxed on each level and the solutions are
corrected by (5).

An MG solver cycle from level m to level | (I < m

here), is defined by

(Um,A) < MG-Solver-Cycle (m, An, U, A, Trn 1)
For k =m,...,l (step by —1) do:
U, +Relax (m,Ak,Uk,A,Tk,k,l)

If k> [ Transfer:

Ug—1 = IF U,
Tr1 = IF YTy — ARUs) + Ag_1Ux

End

For k =1,...,m (step by 1) do:
If (k > 1) Correct Uy = Uy, + If_ (Up—1 — IF7'Uy,)
Uk +—Relax (m,Ak,Uk,A,Tk,k,l)

End

Such an MG cycle, where the algorithm goes from fine
to a coarse level and comes back to the initial fine level
is called V cycle [27]. In this MG solver cycle, the A is
kept constant on all levels.

B. Generalized Rayleigh-Ritz projections

This subsection presents a generalization of the
Rayleigh-Ritz projection [19], for eigenvalue problems

with right hand side. The Rayleigh-Ritz projection is
used to find the eigenvectors when only linear combina-
tions of the eigenvectors are known (separation of eigen-
vectors).

Consider the eigenvalue relation:

AV = VA, (10)

where A = diag(A1,...,Aq) contains on the diagonal the
q sought eigenvalues corresponding to the sought eigen-
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vectors which are the columns of V. Assume that U,
which satisfies

V=UE, (11)

is given instead of V, where F is a g X ¢ invertible matrix
to be found. Substituting (11) into (10) gives

AUE = UEA . (12)

An FAS transfer (4) of (12) to another level yields an
equation of the form

AUE =UEA +TE , (13)

where the product TE is the FAS right hand side of (13)
with known T'. Solutions F and A for (13) can be com-
puted by solving the ¢ x ¢ generalized eigenvalue problem

UT(AU - T)E = (UTU)EA (14)

obtained by multiplying (13) by UT. For T = 0, the
usual Rayleigh-Ritz projection is obtained.

The process of obtaining (E,A) given (A4,U,T) is de-
noted by

(E,A) «— GRRP(A,U,T) (15)

and is referred later as the generalized Rayleigh-Ritz pro-
jection (GRRP).

C. Multigrid projections

The solutions E and A of (13) can be obtained by an
FAS MG procedure. Consider (13) written as a level ¢
problem:

A;U;E — U;EA = T,E . (16)

Then the FAS transfer of (16) to level j is

Backrotation
Input (E,A)

1) Sort the eigenvalues of A and

A;U;E — U;EA = T;E , (17)

where U; = I'U;. T;E is computed by (4), and results
in
T; = II(T: — AUs) + A;10U; (18)

A solution (E, A) of (16) is a solution of (17). The solu-
tions (F, A) of (17) can be obtained by GRRP.

Problems (16) and (17) have the same form. Hence
problem (17) can be further transferred in the same FAS
way to other levels and to perform the GRRP on the last
level, e.g., on coarsest level. The process of obtaining
(E,A) by transferring the eigenvalue problem to other
levels will be called the MG projection (MGP). The FAS
transfer (18) for the problem (17) is the same as the
transfer used in the MG solver cycle for the problem
A;U; — U;A = T;. This makes it possible to perform
the MGP simultaneously with the MG solver cycle, in
MG combined cycles, as presented in Sec. IIE.

D. Backrotations

Backrotations are introduced to prevent rotations of
solutions in subspaces of eigenvectors with equal or close
eigenvalues, and to prevent permutations, rescalings, and
sign changing of solutions during processing. For ex-
ample, backrotations are used after the computation of
(E,A) by an MGP, since E may permute or mix the
eigenvectors in a degenerate eigenspace. Thus, if degener-
ate subspaces are present, the backrotation should bring
E to a form close to block diagonal and having on di-
agonal blocks close to the identity matrix. Each such
block associated to a degenerate subspace prevents mix-
ing inside that subspace. These motivate the particular
backrotation algorithms presented next. A backrotation
step will be further denoted by

(E,A) « Backrotation(E, A) (19)

permute the columns of E accordingly
2) Determine the clusters of eigenvalues of A
to be considered degenerate, and
determine the clusters to be considered nondegenerate

3) For each diagonal block in E

associated with a nondegenerate cluster do:
bring to the diagonal the dominant elements of the block

permuting the columns of FE,

and the diagonal of A correspondingly.
4) Let F be a block diagonal matrix
whose diagonal blocks are the diagonal blocks of E,
corresponding to the determined clusters.
replace each diagonal block which does not correspond
to a degenerate cluster by the corresponding identity matrix

5) Set E = EF~L.

6) Change the signs of columns of E
to get positive elements on diagonal.

7) Normalize the columns of E.

Output (E,A)
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E. Multigrid combined cycles

An MG simultaneous cycle combining an MG solver
cycle with an MGP is described next. Uy is the matrix
whose g columns are approximate solutions of the level k&

problem ApUi = UxA + Ty, where T} is obtained by an
FAS transfer from the level £ + 1 problem. For level m,
Tm = 0. In the applications, m is the finest level involved
in the cycle, I. is the coarsest level, and [, is a level on
which the GRRP and backrotations are performed.

(Um,A,Tm) + Solve-MGP (my Ama UmaAaTm7lpalcv q)

For k=m,...,l. do:
Repeat v¥ Times:

If k = I, then (Uk,A,Tx) < GRR-BR(m, Ay, Ux, A, Th, k, 1)
Uk +—Relax (m, Ak,Uk,A,Tk,k’,lc)

If k > I, Transfer:
U—1 = If Uy,

Tr—1 = IF (T — ArUg) + Agp—1Ug—1

End

For k=1.,...,m do:

If (k > 1) Correct Uy = Uy + If_,(Ugp—1 — IF 'Us)

Repeat v¥ Times

Uy <Relax (m, Ag, U, A, Tk, k, 1)
If k = I, then (Ug,A,T) « GRR-BR(m, Ax, U, A, Tk, k, 1)

End

The GRR-BR separation algorithm used above is the
following:

(Uk, A, Tk) — GRR—BR(m, A, Ug, A, T, k, lp)
(E,A) «<Backrotation(FE, A)
U =U,E
T, =TxE

The MG combined cycle, solve MGP, is the central
building element of the adaptive algorithms presented in
Sec. III.

III. ADAPTIVE MULTIGRID ALGORITHMS

The construction of adaptive MG techniques for eigen-
value problems is motivated by two types of difficulties.
The first type is related to the problems while the second
type is related to the algorithms involved. Difficulties re-
lated to the problems are as follows: existence of close
and equal eigenvalues, unknown cluster structure, differ-
ent cluster structures on different levels, interlevel cross
correspondence of eigenvalues, and poor approximation
of fine level eigenvalues and eigenvectors by coarse level
eigenvalues and eigenvectors. Additionally, the eigenvec-
tors may be highly sensitive with respect to some data,
and the transfers may not conserve the dimensions of the
eigenspaces.

Some of the central difficulties related to the algo-
rithms are due to the following: incompleteness of clus-
ters, mixing of solutions, and unknown parameters of the
algorithms, such as iteration numbers, relaxation param-
eters, and levels on which to apply a given procedure.

These central difficulties can be further grouped in dif-
ficulties related to (a) clusters and mixing and (b) un-
known parameters of subroutines. The techniques intro-
duced for treating the difficulties related to clusters and

mixing are the adaptive separation and completion of
clusters on different levels, the simultaneous processing of
clusters, and the MG projections and backrotations. The
techniques introduced for treating the difficulties related
to unknown parameters are the robustness tests. These
techniques are incorporated in the following adaptive al-
gorithms: the adaptive MG cycle, the cluster completion,
the robustness tests, and the adaptive FMG.

A. Adaptive multigrid cycles

Efficiency and convergence considerations require that
the GRRP should be done for different clusters on dif-
ferent levels in MG cycles. The coarsest level used to
treat a given cluster may not coincide with the level on
which the GRRP is done. Other parameters, such as the
number of relaxations in an MG cycle, may vary too.

Following is a description of a basic adaptive MG cy-
cle which invokes different projection levels for different
clusters. Moreover, the coarsest levels used for different
clusters are different.

Let g eigenvectors be approximated by j clusters on

level k:
Up = (UL,...,U}) (20)

where, as before, each U,f; approximates the solution of
AU = UiA + TE, i = 1,...,j. For each cluster
Ui let lzi, be the level on which the GRR-BR projec-
tion is done, and let I be the coarsest level used in
the MG cycle for this cluster. Here it is assumed that
I < I;. Denote I, = (;},,...,li), l. = (1,...,09), and
by A = diag(Al,...,A?). Usually, on the finest level,
k=m, T, = (Tg,...,T7) = (0,...,0). An MG cycle
consisting of a sequence of cycles for each cluster in turn,
for improving a given approximation (U, A, Tyn), is
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(U, A, T)n) < Adaptive-MGP (m, A, Up, A, Ty Uy, L, q)

Fori=1,...,5 do:

(UL, A%, TE) < Solve-MGP (m, A,,, Ui, A* TE, 151

End

The choice of the different parameters of the algorithm
is done by robustness tests discussed in Sec. ITIC.

B. Cluster completion algorithm

When a procedure acts on an incomplete cluster, then
the dominant error components of the solutions usually
are formed of the nontreated eigenvectors of the com-
pleted cluster. It is hard to eliminate these error compo-
nents. This suggests to complete the clusters and to treat
simultaneously all solutions belonging to the complete
cluster. Simultaneous techniques can be easier coupled
with separation techniques at any stage of the algorithm.
Since sequential techniques cannot invoke separation at
an arbitrary stage and hardly avoid difficulties due to

miiprler qi)

mixing, better efficiency and versatility are obtained for
simultaneous techniques, as for sequential techniques.

The completion of a cluster is done by adding in turns
a new vector u and improving it by MG cycles. The sep-
aration of u from the other eigenvectors is performed by
a GRR-BR. An approximate eigenvalue is computed for
this eigenvector, by a Rayleigh quotient. If the eigen-
value is close to the cluster, then the new vector is added
to the cluster. If it does not belong to the cluster, then
the cluster is considered complete. The convergence of
the additional eigenvector is not sought. At the end, the
complete cluster is improved by several adaptive MGP
cycles. )

Denote by d; the current dimension of the cluster Uj.
The cluster completion and cluster addition algorithms
are given by

(UZ,A,Ti,q) +Cluster-Completion(j, A, U,f; A, T?, B,1,q)
Until (Cluster-Completion-Test = TRUE) Do

Choose random u

Until (Agu,u)/(u,u) and residuals stabilize Do:

(t, Ady e, T}) —Adaptive-MGP (k, Ag,u, Ad,,,, T2,0,1,1)
Separate u from (U},...,U7)

Set A = (Apu, u)/(u,u)

U + (Ul )
A? « diag(A7, )

g=q+1, dj=d;+1
End
Perform

U?, A3, T?) «Adaptive-MGP(k, A, U, A3, T? 13,13, d;
k k k 3

kriprles

(ja Uk1 A’ Tka q) (—Add'CluSter(jv Ak7 Uk, Av Tka lpa lca q)

Set j=j+1

(UL,A7,T],q) (—Clu#er-Completion(j, Ak,Ug,Aj,T,z,lg,lz,q)
Set Uy = (U}, ...,Ul), A=(AL...,Ad)

C. Robustness tests

Robustness tests are techniques which find the values
of param-
eters to be used in a procedure, such that the procedure
will be ‘efficient for a given input. They are essential for
robustness and efficiency. The values of the parameters
are obtained by optimization which is usually performed
on coarse levels, by a search, testing the procedure over
a set of values of the parameters, and choosing the val-
ues for which the procedure performs best, e.g., has best

|

convergence rate. Previous results are used to reduce the
work involved in testing.

For a simple illustration, the robustness test which pro-
vides the values of the parameters (I, [.) for the adaptive
MGP cycle is presented. It is assumed that during the
FMG for a given cluster these parameters will stabilize
as the levels become finer.

A complete cluster on level L is called stabilized, if
it corresponds to a complete cluster from level L — 1 or
L + 1 in the sense of the number of eigenvectors in the
cluster, the values of the eigenvalues, and the eigenvec-
tors approximation. To reduce the work required by a
fine level robustness test, it is assumed that correspond-
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ing stabilized clusters will require the same parameters
lc,lp. Thus, robustness tests are applied on coarse levels
until clusters get stabilized. For nonstabilized clusters,
which would usually exist on coarse levels only, a search
is performed for obtaining best values for I, l,. Such tests
are inexpensive when performed on coarse enough levels,
and often lead to significant fine level work savings.

J
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Denote by I, m,lc,m the I, and [. parameters,
for an MG cycle for a given cluster, (U,,,A),
on level m, and by u(lpm,le,m) u [adaptive]-
MGP(my Ama Uma Aa Tm7 lp,'rn7 lc,my Q)] the convergence
rate (measured by the residual decrease) of the adaptive
MGP cycle for the cluster (U,,, A), using the parameters
(Ip,m,lc,m). The following algorithm updates (Ip m,lc,m):

(lp,mslc,m) < Robustness-Test (m, Ap, Upn, A, Ty, Ly q)
If (|[Am—1 — Am—2|| <€)

then

(lp,'nu lc,m) = (lp,mn—l’ lc,m—l)

else

If (J|Am — Am—1]] =€) or if A,, is not computed

then

Solve for (I m,le,m):

ming, 1 p(lp,lc),
else

lc <lp<m,

(lp,m, lc,m) = (lp,m—h lc,m—l)

endif
endif

Convergence of the adaptive MGP is always attained
using the values found by the robustness test since at
least the single level cycle converges, being a subspace
iteration algorithm [19] (for I =, = m when p < 1).

The minimization search is performed just for a few
choices of parameters, since on coarse levels only a few
combinations of coarse level values of parameters exist.
Similar algorithms are used for determining the types,
parameters, and numbers of relaxations in MG cycles.

D. The adaptive FMG algorithm

During the FMG, coarse levels approximate the desired
subspaces and the clusters of eigenvalues. Coarse lev-
|

Adaptive-FMG (m, g, A)
Setk=1,4¢ =0, =0,
Until (¢’ > q or ¢’ > adimy)

els are also used to optimize the algorithm and to check
the convergence of the sequence of discrete solutions ob-
tained on the sequence of levels towards the differential
solution. The full MG algorithm uses as building blocks
the adaptive-MGP, add-cluster, cluster-completion, and
robustness-test algorithms described before.

The full MG solver described below starts on the coars-
est level. The solutions found there are used as initial
approximation for finer level solutions where more eigen-
vectors are added if needed. The cluster completion is
tested on all new finest levels and performed on several
levels until the clusters are stabilized.

=k lo=k

Perform

(4, Uk, A, Tk, q') < Add-Cluster(j, A, U, A, Tk, Ip,lcyq')
(Ur, A, T) +—Adaptive-MGP (k, Ay, Us, A, Ts, Iy, Lo, ¢')

Until £ > m Do:
If £k < m then:

Set k=k+1, Uy=1IF_Up_1, T =0

endif

(Ip,1c) + Robustness-Test (k, Ax, Uk, A, Tk, lp,1c,q')

If (¢ > q) then:

If (Cluster-Completion-Test=TRUE ) then:
(Uk, A, Ty) < Adaptive-MGP (k, Ax, Uy, A, Ty, lp, e, q')

Else

(U,A9,T{,q') +ClusterCompletion(j, A, Ui, A7, T}

) lz)? li" q’)

(Uk, A, Ty) < Adaptive-MGP (k, Ay, Uy, A, Tk, lp, le, q')

endif
Else

Until (¢’ > g or ¢ > adim;) Perform
(4, Uk, A, Tk, ¢') < Add-Cluster(j, Ag, Ur, A, Tk, lp, lc, q')
(Uk,A,Tk) +—Adaptive—MGP(k,Ak,Uk,A,Tk,lp,lc,q’)

endif
Endo
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The notation k-FMG-V (v;,v;) denotes an FMG al-
gorithm in which k cycles, type V, V(v;,v;), are per-
formed per level, besides the adaptive computations
(cluster completion, add cluster, and robustness tests).
In each V(v;,v;) cycle, v; (v;) relaxations are performed
per level on the path from fine to coarse (coarse to fine).

Our MG approach differs from previous MG ap-
proaches [1-8,12] mainly by the emphasis on robustness,
the adaptive and simultaneous cluster processing, the
MG projection and backrotations, the treatment of eigen-
vector mixing, and the treatment of close and equal eigen-
values.

E. Storage and complexity

Assume that the eigenvectors have size IV on the finest
level. For the adaptive-FMG algorithm, storage is re-
quired for the eigenvectors and the corresponding right
hand sides, on all levels, giving an overall memory esti-
mate of order O(3(NN + 1)) per eigenvector, for problems
in 2D and 3D. If ¢ eigenvectors are processed simulta-
neously, the memory is of order 3¢(IN + 1), while for a
sequential processing, the memory would be only ¢N + 2,
since only one right hand side and a single coarse stor-
age is required for all eigenvectors. It is not necessary
to process all eigenvectors simultaneously but only the
eigenvectors in each cluster. This can lead to signifi-
cant memory savings. The FMG work requires O(N)
operations per eigenvector. The work performed on the
coarsest levels should be added to these estimates. In the
performed tests, where several (up to tens) eigenvectors
were sought, the coarse level work was usually a fraction
of the finest level work. If exact orthogonality of eigen-
vectors is needed on the finest levels, then orthonormal-
izations or projections may be required within the finest
level degenerate or closely clustered eigenspaces. If sepa-
ration is employed on fine levels inside clusters, the work
becomes O(g?N) operations per cluster of ¢ eigenvectors.
However, as can be seen in the computational examples,
accurate orthogonality inside degenerate clusters may be
obtained by coarse level separation also.

In the computational examples presented here, a com-
plexity of O(gN) for g eigenvectors is obtained.

IV. COMPUTATIONAL SOLUTIONS OF THE
SCHRODINGER EIGENVALUE PROBLEM
IN 2D AND 3D

Computational examples for the Schrodinger eigen-
value problem in 2D and 3D are presented to show the
central difficulties related to clusters and mixing, and
to illustrate the efficiency of the presented techniques in
overcoming these difficulties. In the first example the fol-
lowing difficulties are present: existence of clusters with
very close and equal eigenvalues, the cluster structure
is not the same on the different levels, and the coarse
level representation of the solutions is poor. The adap-
tive FMG algorithm is described in detail for this case.
The second example shows that it is enough to treat the

clusters in a sequential manner, and that separation has
to be done within each cluster only in order to obtain
good convergence and accurate separation. The third
example shows that the new MGP may be performed on
the coarsest levels, even in cases with closely clustered or
equal eigenvalues, thus reducing the computational work
significantly. The last example shows that the same effi-
ciency as for problems in 2D is obtained for problems in
3D, even for cases with close and equal eigenvalues.
In all examples the Schrédinger eigenvalue problem

(A=V)u=Au (21)

with periodic boundary conditions, defined on Q = [0, a]¢
(d=2 or 3), where a = 2x /10, is considered. The ith
eigenvalue and eigenvector will be denoted next by A; and
v;. The potentials V' are chosen such that distributions
of eigenvalues with special difficulties are obtained. The
usual second order finite difference discretization of the
Laplacian on rectangular grids is used, although higher
order discretizations can be used as well. Richardson
type extrapolations based on the sequence of solutions
obtained on the different levels can be used to obtain
higher order accuracy. During the MG cycles, linear in-
terpolation is used, while in the FMG, when passing to
the next new finest level, local cubic interpolation is used.
Gauss-Seidel type relaxations in red-black ordering are
used during the cycles, and Kaczmarz and Richardson
relaxations are used on coarsest levels. The symmetry of
the chosen potentials is used to provide the clusters and
the mentioned difficulties, but the symmetry is not used
to simplify the problems or the algorithm.

Example I: Adaptive algorithm

A problem in 2D with the potential V(z,y) = 5 +
3sin(10zx) is presented. The first ¢ = 12 eigenvalues were
required, and have been approximated using an adaptive
1-FMG-V (1,1) algorithm where the coarsest level was a
4 x 4 grid. The results are presented in Tables I and II.

The boxes in Table I show the clusters of close or
equal eigenvalues (with minus sign) found by the algo-
rithm (the formats are chosen to outline the equal digits
in clusters). The cluster structure on the different levels
is not the same, i.e., the level 2 cluster structure dif-
fers from the level 1 cluster structure. The cluster of
six eigenvalues on level 1 {A¢ — A11}, with multiplicities
1 - 4 - 1, has no correspondence on level 2. The first
level eigenvalues are poor approximations of the second
level eigenvalues. The eigenvalue Aq6 on first level is very
close to the eigenvalues {A10 — A13} on the second level.
Such cross correspondences give rise to serious conver-
gence difficulties for algorithms which do not treat them.
The coarse level eigenvectors are poor approximations of
the fine level eigenvectors.

The algorithm described in Sec. IIID is used. To clar-
ify the adaptive flow of the algorithm, a full history of
the computation is given.

The algorithm started on level 1 adding eigenvectors
until the cluster containing A;» was completed. The last
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TABLE I. The first 16 eigenvalues (E) of the discretized Schrédinger eigenvalue problem in 2D, on five levels, computed
by a 1-FMG-V'(1,1) adaptive algorithm. The boxes represent the clusters of eigenvalues obtained on each level at the end of
the last MG cycle. The different formats show the common digits of eigenvalues in each cluster. The notation [n] stands for

multiplication by 10™.

E level 1 level 2 level 3 level 4 level 5

1 0.496347395806[+1 0.495721389176[+1 0.495552134150[+1 0.495509317773[+1 0.495498173425[+1
2 0.860204208719[+2 0.999213342469[+2 0.103677004418[+3 0.104634633842[+3 0.104874695012[+3
3 0.860204208719([+2 0.999213342469[+2 0.103677004418[+3 0.104634633842[+3 0.104874695012[+3
4 0.860569469139[+2 0.9995[+2] 0.10371[+3] 0.1046[+3] 0.10491(+3]

5 0.860569469139[+2 0.99998[+2] 0.10375[+3] 0.1047[+3] 0.10495[+3]

6 0.1670]+3] 0.194919376181[+3 0.202435153808[+3 0.204351758395[+3] 0.204831900326[+3
7 0.167113893828[+3 0.194919376181[+3 0.202435153808[+3 0.204351758395[+3] 0.204831900326[+3
8 0.167113893828[+3 0.194962161804[+3 0.202479632146[+3 0.204395[+3) 0.204876918643[+3
9 0.167113893828[+3 0.194962161804[+3 0.202479632146[+3 0.204396(+3] 0.204876918643[+3
10 0.167113893828[+3 0.329185001547[+3 0.384812002762[+3 0.399841022256[+3] 0.403673103803[+3
11 0.16715[+3] 0.329185001547[+3 0.384812002762[+3 0.399841022256[+3] 0.403673103808[+3
12 0.248170840742[+3 0.329227787655[+3 0.3848590736[+3] 0.399888846[+3] 0.403720980600[+3
13 0.248170840742[+3 0.329227787656(+3 0.3848590739[+3] 0.399888846[+3] 0.403720980600[+3
14 0.248207366784[+3 0.424191908011[+3 0.483580557031[+3] 0.499567983067[+3]

15 0.248207366784[+3 0.424295844705(+3

16 0.329264313697[+3

eigenvalue found, A6, belongs to the next cluster, con-
firming the completeness of the last sought cluster. On
level 1, A;2 belongs to a cluster consisting of two degen-
erate subspaces, each of dimension 2, and the eigenvalues
corresponding to these degenerate subspaces are close to
within ~ 1074 relative difference.

The relevant eigenvectors {vy,...,vi5} were interpo-
lated to level 2 where they provided initial guesses for the
level 2 problem. Here the completion of clusters restarted
but this time working with the cluster structure from
level 1 and using two level cycles. A test was done for
the efficiency of a simultaneous cycle with fine level pro-
jection. The cycle was performed to provide first approx-
imations of the level 2 eigenvalues. The cluster structure
and eigenvalues obtained were compared with the ones
of level 1. Since the agreement was not satisfactory, ex-

cept for vy, a cluster completion algorithm started with
va. The completion continued until the complete clus-
ter containing the last sought eigenvector was obtained
(e.g., for level 2, the desired vi2 belongs to the cluster
{v10 — v13}, the completion was ensured by the far value
of A14). Then the relevant eigenvectors were updated by
a few cycles.

The solution obtained on level 2 was interpolated to
level 3, where a cluster completion test was satisfied only
by the first cluster, v;. The cluster completion algorithm
was applied to the remaining eigenvectors (using robust-
ness tests and the cluster completion tests). These re-
sulted in a few cycles per eigenvector. The parameters
l. and I, were found in the following way: (1) for the
first cluster {v;}, the values were obtained from the pre-
vious level since this cluster was stabilized from level 2;

TABLE II. The residuals of the 16 eigenvectors (E) of the discrete Schrédinger eigenvalue problem in 2D, on five levels,
computed by a 1 -FMG-V(1,1) adaptive algorithm. The residuals in the left column are computed after the interpolation to
the new fine level, and the residuals in the right column are computed at the end of work on each level, during the FMG.
The decrease of the residuals by a factor of 4 from one level to the next (on fine levels, left column) indicates a second order
convergence towards the differential solution. The left columns show the convergence factor of order 10~2 for the first fine level
V(1,1) cycle. The notation [+n] stands for multiplication by 10",

E level 1 level 2 level 3 level 4 level 5

1 0.48[+2] 0.37[-13 0.69[+0] 0.97[-13 0.22[+0] 0.30[-12 0.60[-1] 0.64[-4] 0.15[-1] 0.14[-4]
2 0.53[+2] 0.44[13 0.30[+2] 0.14[-12 0.11[+2] 0.35[-12 0.30[+1] 0.86[-3] 0.76[+0] 0.73[-4]
3 0.61[+2] 0.38[-13] 0.30[+2] 0.80[-13] 0.11[+2] 0.29[-12] 0.30[+1] 0.86[-3] 0.76[+0] 0.73[-4]
4 0.66[+2] 0.68[-13] 0.30[+2] 0.17[-12] 0.11[+2] 0.30[-12] 0.30[+1] 0.54[-2] 0.76[+0] 0.11[-2]
5 0.55[+2] 0.39[-13 0.30[+2] 0.24[-12 0.11{+2| 0.45[-12 0.30[+1] 0.54[-2] 0.76[+0] 0.11[-2
6 0.52|+2| 0.12[-12 0.11[+3] 0.32[-12 0.16[+2] 0.35[-12 0.44[+1] 0.42[—2] 0.11[{+1] 0.82[-3
7 0.59[+2] 0.31[-12] 0.45[+2] 0.54[-11] 0.16[+2] 0.32[-1] 0.44[+1] 0.42[-1] 0.11[+1] 0.82[-3]
8 0.61[+2] 0.20[-12] 0.45[+2] 0.57[-11] 0.16[+2] 0.41[-12] 0.44[+1] 0.39[-2] 0.11[+1] 0.83[-3]
9 0.62[+2] 0.17[-12] 0.45[+2] 0.71[-11] 0.16[+2] 0.33[-12] 0.44[+1] 0.1[-2] 0.11[+1] 0.93[-3
10 0.73[+2] 0.13[-12] 0.45[+2] 0.15[-9] 0.12[+3] 0.30[-9] 0.43[+2] 0.72[-8] 0.12[+2] 0.33[-2
11 0.58(+2] 0.34[-12] 0.11[+3] 0.41[-9] 0.12[+3] 0.16[-9] 0.43[+2] 0.20[-8] 0.12[+2] 0.33[-2]
12 0.54[+2] 0.39[12] 0.12[+3] 0.81[-11] 0.12[+3] 0.26[-9] 0.43[+2] 0.21[-5] 0.12[+2] 0.29[-1]
13 0.51[+2] 0.70[-12] 0.12[+3] 0.50[-4] 0.12[+3] 0.50[-9 0.43[+2] 0.16[-5 0.12[+2] 0.29[-1]
14 0.44[+2] 0.96[-12] 0.12[+3] 0.19[-5] 0.12[+3] 0.171-6 0.44[+2] 0.34[2

15 0.53[+2] 0.16[-12] 0.12[+3] 0.55[+1]

16 0.69[+2] 0.19[-6]
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(2) for clusters 2 and 3 {ve — vg} and {vio — v13}, I and
I, were taken from level 2 since these clusters became
stabilized after the cluster completion on level 3; (3) ro-
bustness tests were used for cluster 4 since the eigenvalues
{A10 — A13} on level 3 and the corresponding ones from
level 2 were not close enough. Then one cycle V(1,1) was
performed for each cluster.

On level 4, the first three clusters, eigenvectors {v; —
vg} became stabilized, and their parameters were taken
from level 3. The cluster completion algorithm was ap-
plied to cluster 4, {vip — v13}, where a few cycles were
sufficient, and the parameters were taken from level 3
since the cluster became stabilized after the cycles. Then
a V(1,1) cycle was performed for each cluster.

On level 5, the cluster completion test was satisfied
by all relevant eigenvectors {vi — vis}, all clusters be-
ing stabilized from previous levels. A V(1,1) cycle was
performed for each cluster. The I. and [, for the sepa-
rate clusters, in the final cycles, on levels 3, 4, 5, were
found as follows: for {vi}: I = I, = 1, for the other clus-
ters, containing {vs,...,v13}, lc = l, = 2 were obtained
(a test for the asymptotic convergence rate, for cluster
{v1i0 — v13}, may lead to I, = [, = 3, but such a test was
not used in this run).

The additional last eigenvector obtained in the cluster
completion test, used just to ensure that the previous
cluster was complete, was not needed and not used in
further steps. Usually its convergence was poor since the
algorithm did not separate it from the next eigenvectors
in its cluster, e.g., on level 2, A4 was not separated from
the next seven eigenvectors with close eigenvalues.

The left columns, in Table II, show the residuals after
the cubic interpolation in the FMG. These residuals de-
crease with a factor of 4 (for fine levels) from one level to
the next, indicating a second order convergence towards
the differential solution. The right columns, for each level
in Table II, show the residuals at the end of the cycle in
the 1-FMG, on each level, demonstrating a convergence
factor of order 102 for the first cycle on fine levels 4 and
5.

A simultaneous cycle for all clusters with separation on

the coarsest common level for all clusters (here level 2)
would improve the efficiency of the first cycle but this was
not needed. (This also would improve the scalar products
which resulted of order 10~ after first cycle in the FMG,
in this case. Accurate orthogonality is obtained by the
algorithm described in the next example.)

This algorithm is of order O(gN) if one does not use
fine level separation inside the clusters. The adaptive
coarse level work on levels 1,2, took approximately 1/6
of the total computer time and on levels 1,2,3 approxi-
mately 1/4 of the total computer time. This is a fixed
time and it would be equivalent to 1/16 of the total com-
puter time if level 6 would be employed too.

Example II: Fine level separation

In this example, the potential V(z,y) = 5+3sin(10z)+
2 cos(10y) causes a further splitting of the eigenvalues.
The clusters were treated sequentially and the projec-
tion for each cluster was performed on the finest level
to provide accurate finest level separation inside clusters.
The results, for nine eigenvectors, are presented in Ta-
bles IIT and IV. A 10-FMG-V(1,1) algorithm was used
to show the constant convergence of order 0.1 rate per cy-
cle. The coarsest relaxation level for clusters 2 and 3 was
level I, = 2 and for the first eigenvector was level [, = 1.
On levels 1 and 2 the adaptive algorithm and few cycles
were used. On finer levels, I. and [, were taken from
level 2. All eigenvectors came out accurately orthogonal
(10~'3 scalar products on level 4). This shows that it is
enough to perform separation only within clusters. On
levels 3 and 4, 10 V(1,1) cycles reduced the residuals for
all eigenvectors by 10 orders of magnitude.

Example III: Coarse level separation, 2D and 3D

In the next two examples (Tables V and VI) we show
that separation on the coarsest level (I, = [; = 1) may be

TABLE III. The residuals of the first nine eigenvectors (F) of the discretized Schrédinger eigen-
value problem in 2D, on four levels, computed by a 10-FMG-V(1,1) adaptive algorithm. The
residuals in the left column are computed after the interpolation to the new fine level, and the
residuals in the right column are computed at the end of work on each level, during the FMG. The
residuals decrease in 10 MG cycles with 10 orders of magnitude (to values of 107'%) on the fine

levels. The notation [+n] stands for multiplication by 10",

E level 1 level 2 level 3 level 4

1 0.48[+2] 0.14[-13]] 0.83[+0] 0.12[-12]]  0.27[+0] 0.11[-11] 0.72[-1] 0.41[-11]
2 0.46[+2] 0.83[-9] 0.30[+2] 0.48[-9] 0.11[+2] 0.42[-12]|  0.30[+1] 0.21[-11]
3 0.52[+2] 0.29[-9] 0.30[+2] 0.12[-8] 0.11[+2] 0.75[-12]|  0.30[+1] 0.52[-11]
4 0.56[+2] 0.56[-10] 0.30[+2] 0.73[-9] 0.11[+2] 0.93[-12]|  0.30[+1] 0.56[-11]
5 0.54[+2] 0.85[-9] 0.30[+2] 0.55[-8] 0.11[+2] 0.17[-11]|  0.30[+1] 0.12[-10]
6 0.53[+2] 0.57[-2] 0.11[+3] 0.40[-5] 0.16[+2] 0.61[-12]|  0.44[+1] 0.16[-10]
7|  0.53[+2] 0.68[-11] 0.45[+2] 0.57[-5] 0.16[+2] 0.10[-11]|  0.44[+1] 0.39[-10]
8 0.41[+2] 0.13[-10] 0.45[+2] 0.29[-5] 0.16(+2] 0.82[-12]|  0.44[+1] 0.33[-10]
9 0.43[+2] 0.80[-2] 0.11[+3] 0.14[-5] 0.16[+2] 0.83[-12]|  0.44[+1] 0.48[-10]
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TABLE IV. The first nine eigenvalues (E) of the discretized Schrédinger eigenvalue problem in
2D from the Table III example, computed by a 10-FMG-V (1, 1) adaptive algorithm. The notation

[+n] stands for multiplication by 10™.

E| level 1 level 2 level 3 level 4

1 -0.494698319454[+1 —0.493789518604[+1] -0.493543833853[+1] -0.493481214576[+1]
2| -0.860202443918[+2] -0.9991[+2] -0.10367[+3] -0.10463[+3]

3| -0.860202443918[+2] -0.999361[+2] -0.1036931[+3] -0.104650[+3)

4| -0.860406326305[+2] -0.999362[+2] -0.1036937[+3] -0.104651[+3]

5 -0.860406326305(+2] -0.9997[+2] -0.1037[+3] -0.10469[+3]

6| -0.1670[+3] 20.19491[+3] -0.20243[+3] -0.20434[+3]

7| -0.167113893828[+3]  -0.19493[+3] -0.20245[+3] -0.20436[+3]

8| -0.167113893828[+3]  -0.19495[+3] -0.20247[+3] -0.20439(+3]

9| -0.16713[+3] -0.19497(+3] -0.20249[+3] -0.2044[+3]

sufficient for providing accurate finest level separation,
even for clusters containing very close and degenerate
eigenvalues. In the degenerate clusters the eigenvectors
were not orthogonalized on the finest levels but resulted
so from the FMG. This implies an O(gqNV) algorithm even
for close clustered cases.

Table V shows results for a problem in 2D with a po-
tential V(z,y) = 2 + 0.1sin(10z + 10y), which produces
a splitting of the first cluster of four eigenvalues into two
degenerate clusters, whose eigenvalues are close to within
10~%. A second order approximation was obtained by a 1-
FMG-V(1,1) algorithm with an asymptotic convergence

rate of 0.1 per cycle on fine levels. The 13 equal digits
of the degenerate eigenvalues, on all levels, are seen. On
level 5, eight cycles were performed to show the constant
convergence rate per cycle (see cycles 3 and 8, where
the convergence rate is accurately 0.1). The eigenvectors
came out accurately orthogonal, even in the degenerate
eigenspaces, although the projection was performed only
on the coarsest level (the eigenvectors scalar products
being of order 1072 on level 5).

The same efficiency is obtained for problems in 3D,
as can be seen in Table VI. The potential V(z,y,2) =
2 +5in(20x + 10y — 10z) determines a cluster of six close

TABLE V. The eigenvalues and residuals of the first five eigenvectors of the discretized
Schrodinger eigenvalue problem in 2D, on five levels, computed by a 1-FMG-V(1,1) algorithm.
On the finest level, eight cycles were performed to show the asymptotic convergence rate of 0.1
for the cluster presenting degenerate and very close eigenvalues. The separation was performed on
the coarsest level, each cycle performed two Gauss-Seidel relaxations per level [V (1, 1) cycles]. The

notation [+n] stands for multiplication by 10%™.

Icyclel vector first residual last residual eigenvalue |
Level 4
1 1 0.18[-2] 0.13[-3] -0.19999752449715[+1]
2 0.30[+1] 0.43[-2] -0.10162979203934[+3]
3 0.30[+1] 0.43[-2] -0.10162979203934[+3]
4 0.30[+1] 0.43[-2] -0.10172931140738[+3]
5 0.30[+1] 0.43[-2] -0.10172931140738(+-3]
Level 5
1 1 0.46[-3] 0.36[-4] -0.19999750026388[+1]
2 0.76[+0] 0.40[-3] -0.10186970728937[+3]
3 0.76[+0) 0.40[-3] -0.10186970728937[+3]
4 0.76[+0] 0.40[-3] -0.10196970729590(+3]
5 0.76[+0] 0.40[-3] -0.10196970729590E+3]
3 1 0.35[-5] 0.33[-6] -0.19999749801202[+1]
2 0.27[-4] 0.26[-5] -0.10186970049930(+3]
3 0.27[-4] 0.26[-5] -0.10186970049930(+-3]
4 0.27[-4] 0.26[-5] -0.10196970049780(+-3]
5 0.27[-4] 0.26[-5] -0.10196970049780(+-3]
8 1 0.97[-11] 0.26[-10] -0.19999749799142[+1)
2 0.29[-9] 0.31[-10] -0.10186970048459(+3]
3 0.29[-9] 0.31[-10] -0.10186970048459([+3]
4 0.29[-9] 0.31[-10] -0.10196970048302(+3]
5 0.29[-9] 0.31[-10] -0.10196970048302(+3]
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TABLE VI. The eigenvalues and residuals of the first seven eigenvectors of the discretized
Schrodinger eigenvalue problem in 3D, on three levels, computed by a 1-FMG-V(1,1) algorithm.
The boxes show the clusters of very close and equal eigenvalues. The separation was performed on
the coarsest level, each cycle performed two Gauss-Seidel relaxations per level [V (1,1) cycles]. The

notation [£n] stands for multiplication by 10%™.

Icyclel vector first residual last residual eigenvalue |
Level 3
3 1 0.15[-2 0.10[-3 -0.19991341655960[41
2 0.25[-1 0.25[-2 -0.10072012662990[+3
3 0.25[-1 0.25[-2 -0.10072012662990[+3
4 0.23[-1 0.21]-2 -0.10072068269198[+3
5 0.23[-1] 0.21[-2] -0.10072068269198(+3]
6 0.23[-1] 0.21[-2] -0.10072068269198[+3]
7 0.23[-1] 0.21[-2] -0.10072068269198[+3]

eigenvalues. The convergence rate of 0.1 in cycle 3 and
the first six common digits of the eigenvalues in the clus-
ter are observed. It is a close similarity between the 2D
and 3D results.

These examples indicate that the reduction of com-
plexity of the new algorithms from O(g?N) to O(gN)
holds for a class of problems which include difficult cases
as shown.

A. Observations on the algorithms

Observations and details of the algorithms, not intro-
duced before in order to keep the expositoin simpler, are
mentioned in this section.

(1) When the operators A; are obtained by discretizing
differential problems, it is not needed to compute and
store A;.

(2) In the shown examples, only local operations are
needed in relaxations, transfers, and corrections, opera-
tions which involve only the unknown at each point and
its neighbors.

(3) Different relaxations can be used in the algorithms,
like damped Jacobi, Gauss-Seidel, Richardson, Kacz-
marz, block relaxations; see for example [27].

On the GRRP

(1) For the GRRP, the matrix A is not needed, but
it is enough to provide a procedure that calculates AU.
No operations are performed on the matrix A, e.g., to
precondition or bring A to a special form.

(2) The vectors UT in (14) can be replaced by a more
general set of vectors Y'7T.

(3) Solutions (E, A) of (13) may not exist. However,
as in the usual Rayleigh-Ritz projection, an F and a A
can be found such that the projection of the residual of
(13) on the columns of U is minimized, i.e., performing
GRRP.

(4) The complexity of solving the generalized eigen-
value problem in GRRP on the coarsest level, for q vec-
tors, is of order O(q?), which is often much smaller than
O(g?N), the cost of computing E and A on a fine level.

By this procedure the fine level eigenvalues are computed
on coarse levels. The coarse level updated eigenvalues en-
hance the efficiency of MG cycles.

On MG solver cycles

(1) In the presented form, the MG solver cycles update
the solutions simultaneously but MG solver cycles can be
performed sequentially, in turns for each eigenvector or
for each cluster.

(2) Other types of solver cycles can be defined in the
same way, incorporating different sequences of visiting
the levels, e.g., W type cycles [27]. The usage of W cy-
cles was generally not needed in algorithms, although in
some cases the convergence rate for W cycles was better,
but also the work increased by W cycles. Sometimes W
cycles increase the mixing of solutions.

(3) Additional procedures can be performed during the
MG cycles, like updating the eigenvalues by Rayleigh
quotients.

On MG combined cycles

(1) At different stages of the MG combined cycle, for
example on the coarsest level only, the solutions can
be normalized using an FAS normalization, i.e., setting
[|U|| = T, where T is a scalar computed like in (4) where
FU is replaced by ||U||. This can be done after the
backrotations but normalization of solutions can be per-
formed also on the finest level. Accurate normalization,
if needed, can be performed as the last step on the finest
level, e.g., in the last cycle of the FMG. This does not
change the complexity of the algorithm.

(2) The MGP is also in agreement with the general
principle of performing global steps on coarse levels.

On adaptive FMG algorithms

(1) On coarse levels, only a part of the sought eigen-
vectors may be approximated, e.g., if the coarse levels
cannot approximate more eigenvectors. More eigenvec-
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tors can be added and processed on finer levels.

(2) Transfers from fine to coarse levels may not con-
serve the dimensions of the transferred subspaces. This
difficulty is handled by robustness tests (which do not
detect the loss of dimension but the inefficiency of the
MG cycles in such situations).

(3) The separation of solutions U; = U;E cannot be
combined for any E with the usual FAS correction of U;,
(5), since this would usually destroy an exact solution U;,
e.g., if F is not the identity but a permutation matrix. To
overcome this difficulty we propose a backrotation FAS
correction:

U;=U;E + II(U; - U;E), T;=TE. (22)

In this correction the right hand side T is updated also.
In (22) the multiplication U;E is of the same order of
work as needed for a Rayleigh-Ritz separation for Uj;.
Still, the cheaper correction (5) can be used instead of
(22) when solutions are sufficiently accurate and using
backrotations. This is shown by the computational ex-
amples too. The correction (22) can be used on coarse
levels and when the solutions are not well enough ap-
proximated.

(4) Computational difficulties may occur for degener-
ate subspaces when any matrix E is a solution of GRRP.
In such cases, during an MG combined cycle, F will mix
the coarse solutions and destroy the fine ones after in-
terpolation (see, for example, that orthogonality will be
destroyed). Similar or worse difficulties are obtained for
clusters of eigenvalues since the algorithms act on ap-
proximated clusters as on degenerate spaces, i.e., mixing
solutions. These difficulties are treated by the backrota-
tions, as shown in the computational examples.

(5) In adaptive MGP the clusters are treated sequen-
tially and within each cluster the solutions are treated
simultaneously by a combined MG cycle solve MGP.

(6) A simultaneous cycle for several clusters is obtained
by grouping the clusters into a single larger cluster and
applying adaptive MGP to it. This can be used to im-
prove the separation between clusters and it is particu-
larly useful on coarse levels at initial stages of the FMG
when clusters are not separated well enough.

(7) If for each cluster the GRR-BR projection is per-
formed on the finest level, the algorithm still requires less
work than an algorithm performing the fine level projec-
tion for all clusters simultaneously.

(8) If mixing occurs on coarse levels (as often happens
since here the solutions are poorly represented), one may
expect an algorithm using fine level separation to have
a poor efficiency or even not to converge. A coarse level
separation usually restores the convergence or improves
the efficiency in such cases.

(9) For well separated eigenvalues the projection may
not be needed except at initial coarse level stages of the
FMG, later the eigenvalues determine the separation of
eigenvectors via the MG solver cycles. The same holds
for well separated clusters which do not need a simulta-
neous separation. This is especially useful for a larger
number of eigenvectors, belonging to well separated clus-
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ters (e.g., already for 10 eigenvectors the improvement
can be noticeable).

(10) The number of relaxations can vary with level and
cluster. In the computational tests one or two relaxations
per fine level passing were performed.

(11) In particular cases, parameters of subroutines such
as number of relaxations and parameters of relaxations
can be obtained by Fourier analysis. Robustness tests
allow us to find such parameters in general cases.

(12) The computation of eigenvalues and eigenvectors
may be simplified if additional information on the prob-
lem or on the solutions is known. For example, such in-
formation may include information on the problem, e.g.,
symmetry of the problem, ways to precondition the prob-
lem, or to reduce the problem to a simpler one, informa-
tion on eigenvalues such as the cluster structure, the mul-
tiplicity of eigenvalues, approximate eigenvalues, largest
or smallest eigenvalue, and information on eigenvectors,
e.g., space spanned by eigenvectors, approximate eigen-
vectors, and solutions of a related problem. Clusters of
close or equal eigenvalues may appear due to symme-
tries of the problem. Often in such cases one can take
advantage of the symmetry and reduce the problem to
one in which mixing of eigenvectors can be avoided. We
refer to [6], where symmetry and other information on
the problem were successfully used in solving real prob-
lems by an MG approach. The reduction based on sym-
metry may be problematic when the cluster structure is
not known, when the cluster structure differs on different
levels, or when other difficulties such as eigenvalue cross-
correspondences are present (see, for example, Table I).
Mixing may appear for well separated eigenvalues also.
Clusters of close eigenvalues may appear in nonsymmet-
ric cases also, as we show in [11], where real problems are
solved. In the presented MG approach, we consider the
cluster structure unknown, the problems are not reduced
based on symmetry, and other additional information is
generally not needed. We tried to develop a general adap-
tive algorithm which will be able to handle difficulties
common to a large class of eigenvalue problems.

(13) In the computational examples the potentials have
the form V = ¢+ W, where the constant c is a shift intro-
duced for convenience to make V positive in the Gauss-
Seidel relaxation. Adding c to the computed eigenvalues
we obtain the eigenvalues of the operator A — W. In
all examples the first eigenvalue of A — W is very close
to 0 (i.e., 0.045, 0.065, 0.000 025, 0.000 86), showing that
there is no additional difficulty in computing eigenvalues
close to 0 (we can always use a shift to bring an eigenvalue
to 0 or to shift it from 0). No changes of the algorithm
are needed for computing eigenvalues close to 0 (e.g., the
case V = 0, which implies the 0 eigenvalue, is treated
in the same way). The singularity or close to singularity
of the operators A — AI are treated by Kaczmarz type
relaxations on coarse levels. Kaczmarz type relaxations
have the advantages of being local and simple. Another
coarse level treatment may be used also; see, for exam-
ple, [6]. The difficulties mentioned in [6], i.e., divergence
of smooth components and large interpolation errors on
coarse levels, relate to mixing introduced by relaxations
and transfers. The MGP and the adaptive treatment did
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overcome these difficulties in the computational exam-
ples, as well as in other hard cases [11,10].

V. CONCLUSIONS

A robust and efficient MG algorithm to compute a few
eigenvectors and the corresponding eigenvalues for large
scale eigenvalue problems has been developed. The al-
gorithm’s robustness results from the adaptive comple-
tion and treatment of clusters, the simultaneous treat-
ment of solutions in each cluster, and from tests which
monitor the algorithm’s convergence and efficiency. The
algorithm treats central difficulties such as the poor so-
lution representation on coarse levels, the existence of
clustered eigenvalues, the approximation of incomplete
clusters, and the mixing of approximated eigenvectors
during the solution process. Its eigenvector separation
efficiency stems from an MG projection technique which
is a generalization of the Rayleigh-Ritz projection, com-
bined with backrotations.

In the cases when the algorithm properly separates the
eigenvectors on coarse levels, its complexity is of O(gN)
for g eigenvectors of size N on the finest level. The nu-
merical tests showed that an accurate fine level separa-
tion was obtained by the coarse level projection, even for
problems with very close or equal eigenvalues.
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The results of the numerical tests for Schrodinger
eigenvalue problems, in 2D and 3D, show that the al-
gorithm achieved the same accuracy, using the same
amount of work (per eigenvector), as the Poisson MG
solver. A second order approximation is obtained us-
ing the five-point in 2D and nine-point in 3D discretized
Laplacian, by 1-FMG-V (1,1) in O(¢N) work. The work
was of order of a few (as 8) fine level Gauss-Seidel re-
laxations per eigenvector. The adaptive work was only a
fraction of the fine level work and enhanced the efficiency
of the fine level cycles. Constant convergence rate per cy-
cle was obtained for the presented cases. The robustness
of the algorithm has been demonstrated on problems with
eigenvalue distributions that present special difficulties.
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